[ad_1]
Moon, R. J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J. Cellulose nanomaterials evaluate: construction, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). A vital evaluate on construction–property relationships in cellulose nanomaterials.
Isogai, A. Improvement of fully dispersed cellulose nanofibers. Proc. Jpn. Acad. Ser. B 94, 161–179 (2018).
Isogai, A., Saito, T. & Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011). The primary paper on TEMPO remedy of nanocellulose.
Chen, C. et al. Construction–property–perform relationships of pure and engineered wooden. Nat. Rev. Mater. 5, 642–666 (2020).
Isogai, A. Current state of affairs and future prospects of Nanocellulose R&D in Japan. In 2018 Int. Conf. Nanotechnology for Renewable Supplies (18NANO) (TAPPI, 2018).
Arasto, A., Koljonen, T. & Similä, L. (eds) Progress by Integrating Bioeconomy and Low-Carbon Economic system: Eventualities for Finland till 2050 (VTT Technical Analysis Centre of Finland, 2018); https://cris.vtt.fi/en/publications/growth-by-integrating-bioeconomy-and-low-carbon-economy-scenarios.
Šturcová, A., Davies, G. R. & Eichhorn, S. J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6, 1055–1061 (2005). An early report on the mechanical properties of crystalline cellulose.
Mark, R. E. Cell Wall Mechanics of Tracheids (Elliots, 1967).
Dufresne, A. Nanocellulose: From Nature to Excessive Efficiency Tailor-made Supplies (Walter de Gruyter, 2017).
Trovatti, E. et al. Enhancing energy and toughness of cellulose nanofibril community constructions with an adhesive peptide. Carbohydr. Polym. 181, 256–263 (2018).
Park, H. J., Weller, C. L., Vergano, P. J. & Testin, R. F. Permeability and mechanical properties of cellulose-based edible movies. J. Meals Sci. 58, 1361–1364 (1993).
Mittal, N. et al. Multiscale management of nanocellulose meeting: transferring exceptional nanoscale fibril mechanics to macroscale fibers. ACS Nano 12, 6378–6388 (2018).
Mittal, N. et al. Ultrastrong and bioactive nanostructured bio-based composites. ACS Nano 11, 5148–5159 (2017).
Håkansson, Ok. M. O. et al. Hydrodynamic alignment and meeting of nanofibrils leading to robust cellulose filaments. Nat. Commun. 5, 4018 (2014).
Torres-Rendon, J. G., Schacher, F. H., Ifuku, S. & Walther, A. Mechanical efficiency of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a vital comparability. Biomacromolecules 15, 2709–2717 (2014).
Fukuzumi, H., Saito, T., Iwata, T., Kumamoto, Y. & Isogai, A. Clear and excessive gasoline barrier movies of cellulose nanofibers ready by TEMPO-mediated oxidation. Biomacromolecules 10, 162–165 (2009).
Yang, X., Reid, M. S., Olsén, P. & Berglund, L. A. Eco-friendly cellulose nanofibrils designed by nature: results from preserving native state. ACS Nano 14, 724–735 (2020).
Wu, C.-N., Yang, Q., Takeuchi, M., Saito, T. & Isogai, A. Extremely robust and clear layered composites of nanocellulose and artificial silicate. Nanoscale 6, 392–399 (2014).
Guan, Q.-F. et al. Light-weight, robust, and sustainable cellulose nanofiber-derived bulk structural supplies with low thermal growth coefficient. Sci. Adv. 6, eaaz1114 (2020).
Benítez, A. J., Torres-Rendon, J., Poutanen, M. & Walther, A. Humidity and multiscale construction govern mechanical properties and deformation modes in movies of native cellulose nanofibrils. Biomacromolecules 14, 4497–4506 (2013).
Sehaqui, H. et al. Cellulose nanofiber orientation in nanopaper and nanocomposites by chilly drawing. ACS Appl. Mater. Interf. 4, 1043–1049 (2012).
Benítez, A. J. & Walther, A. Counterion dimension and nature management structural and mechanical response in cellulose nanofibril nanopapers. Biomacromolecules 18, 1642–1653 (2017).
Music, J. et al. Processing bulk pure wooden right into a high-performance structural materials. Nature 554, 224–228 (2018).
Lundahl, M. J., Klar, V., Wang, L., In the past, M. & Rojas, O. J. Spinning of cellulose nanofibrils into filaments: a evaluate. Ind. Eng. Chem. Res. 56, 8–19 (2017).
Yang, X. & Berglund, L. A. Water-based strategy to high-strength all-cellulose materials with optical transparency. ACS Maintain. Chem. Eng. 6, 501–510 (2018). An early report on high-strength all-cellulose movies.
Feng, Y., Zhang, X., Shen, Y., Yoshino, Ok. & Feng, W. A mechanically robust, versatile and conductive movie based mostly on bacterial cellulose/graphene nanocomposite. Carbohydr. Polym. 87, 644–649 (2012).
Zhou, Y. et al. A printed, recyclable, ultra-strong, and ultra-tough graphite structural materials. Mater. At this time 30, 17–25 (2019).
Liu, A., Walther, A., Ikkala, O., Belova, L. & Berglund, L. A. Clay nanopaper with robust cellulose nanofiber matrix for fireplace retardancy and gasoline barrier capabilities. Biomacromolecules 12, 633–641 (2011).
Biswas, S. Ok., Sano, H., Shams, Md. I. & Yano, H. Three-dimensional-moldable nanofiber-reinforced clear composites with a hierarchically self-assembled “reverse” nacre-like structure. ACS Appl. Mater. Interf. 9, 30177–30184 (2017).
Wang, S. et al. Tremendous-strong, super-stiff macrofibers with aligned, lengthy bacterial cellulose nanofibers. Adv. Mater. 29, 1702498 (2017).
Light-weight Supplies for Vehicles and Vans https://www.energy.gov/eere/vehicles/lightweight-materials-cars-and-trucks (Car Applied sciences Workplace, Workplace of Power Effectivity and Renewable Power, 2014).
NCV Cellulose Nano Fiber Car http://www.rish.kyoto-u.ac.jp/ncv/ (Ministry of the Surroundings, 2019).
Geyer, R., Jambeck, J. R. & Regulation, Ok. L. Manufacturing, use, and destiny of all plastics ever made. Sci. Adv. 3, e1700782 (2017).
PlasticsEurope https://www.plasticseurope.org/en (accessed October 2019).
Ritchie, H. & Roser, M. Plastic air pollution. In Our World in Information https://ourworldindata.org/plastic-pollution (2018).
Albertsson, A.-C. & Hakkarainen, M. Designed to degrade. Science 358, 872–873 (2017).
Thakur, S. et al. Sustainability of bioplastics: alternatives and challenges. Curr. Opin. Inexperienced Maintain. Chem. 13, 68–75 (2018).
Coughlan, M. P. Mechanisms of cellulose degradation by fungi and micro organism. Anim. Feed Sci. Technol. 32, 77–100 (1991).
Wang, S., Lu, A. & Zhang, L. Latest advances in regenerated cellulose supplies. Prog. Polym. Sci. 53, 169–206 (2016).
Holland, C., Vollrath, F., Ryan, A. J. & Mykhaylyk, O. O. Silk and artificial polymers: reconciling 100 levels of separation. Adv. Mater. 24, 105–109 (2012).
Sharma, A., Thakur, M., Bhattacharya, M., Mandal, T. & Goswami, S. Business utility of cellulose nano-composites—a evaluate. Biotechnol. Rep. 21, e00316 (2019).
Cowie, J., Bilek, E. T., Wegner, T. H. & Shatkin, J. A. Market projections of cellulose nanomaterial-enabled merchandise. Half 2: Quantity estimates. TAPPI J. 13, 57–69 (2014).
Babu, R. P., O’Connor, Ok. & Seeram, R. Present progress on bio-based polymers and their future tendencies. Prog. Biomater. 2, 8 (2013).
Wang, Q. Q. et al. Approaching zero cellulose loss in cellulose nanocrystal (CNC) manufacturing: restoration and characterization of cellulosic strong residues (CSR) and CNC. Cellulose 19, 2033–2047 (2012).
Chen, L., Zhu, J. Y., Baez, C., Kitin, P. & Elder, T. Extremely thermal-stable and practical cellulose nanocrystals and nanofibrils produced utilizing absolutely recyclable natural acids. Inexperienced Chem. 18, 3835–3843 (2016). An unique report on the fabrication cellulose nanocrystals and nanofibres utilizing concentrated natural acids.
Yarbrough, J. M. et al. Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11, 3101–3109 (2017).
Zhou, H., St John, F. & Zhu, J. Y. Xylanase pretreatment of wooden fibers for producing cellulose nanofibrils: a comparability of various enzyme preparations. Cellulose 26, 543–555 (2019).
Hata, Y., Sawada, T., Sakai, T. & Serizawa, T. Enzyme-catalyzed bottom-up synthesis of mechanically and physicochemically steady cellulose hydrogels for spatial immobilization of practical colloidal particles. Biomacromolecules 19, 1269–1275 (2018).
Koskela, S. et al. Lytic polysaccharide monooxygenase (LPMO) mediated manufacturing of ultra-fine cellulose nanofibres from delignified softwood fibres. Inexperienced Chem. 21, 5924–5933 (2019).
Kracher, D. et al. Extracellular electron switch techniques gas cellulose oxidative degradation. Science 352, 1098–1101 (2016).
Nogi, M., Iwamoto, S., Nakagaito, A. N. & Yano, H. Optically clear nanofiber paper. Adv. Mater. 21, 1595–1598 (2009). An early report on cellulose-nanofibre-based clear paper.
Fang, Z. et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for photo voltaic cells. Nano Lett. 14, 765–773 (2014).
Hsieh, M.-C., Koga, H., Suganuma, Ok. & Nogi, M. Hazy clear cellulose nanopaper. Sci. Rep. 7, 41590 (2017).
Lin, C. et al. Preparation of extremely hazy clear cellulose movie from dissolving pulp. Cellulose 26, 4061–4069 (2019).
Nogi, M. et al. Excessive thermal stability of optical transparency in cellulose nanofiber paper. Appl. Phys. Lett. 102, 181911 (2013).
Ifuku, S. et al. Floor modification of bacterial cellulose nanofibers for property enhancement of optically clear composites: dependence on acetyl-group DS. Biomacromolecules 8, 1973–1978 (2007).
Zhu, H. et al. Excessive mild administration in mesoporous wooden cellulose paper for optoelectronics. ACS Nano 10, 1369–1377 (2016).
Toivonen, M. S. et al. Anomalous-diffusion-assisted brightness in white cellulose nanofibril membranes. Adv. Mater. 30, 1704050 (2018). A current report on the mechanism of the tunable optical whiteness of cellulose nanofibre movies.
Liang, H.-L. et al. Roll-to-roll fabrication of touch-responsive cellulose photonic laminates. Nat. Commun. 9, 4632 (2018).
Wang, J. et al. Moisture and oxygen barrier properties of cellulose nanomaterial-based movies. ACS Maintain. Chem. Eng. 6, 49–70 (2018).
Liu, Q. et al. Versatile clear aerogels as window retrofitting movies and optical parts with tunable birefringence. Nano Power 48, 266–274 (2018). A current report on thermally insulating and clear cellulose movies.
Li, T. et al. A radiative cooling structural materials. Science 364, 760–763 (2019).
Lv, T., Huang, J., Liu, W. & Zhang, R. From sky again to sky: embedded clear cellulose membrane to enhance the thermal efficiency of photo voltaic module by radiative cooling. Case Research Therm. Eng. 18, 100596 (2020).
Okahisa, Y., Yoshida, A., Miyaguchi, S. & Yano, H. Optically clear wooden–cellulose nanocomposite as a base substrate for versatile natural light-emitting diode shows. Compos. Sci. Technol. 69, 1958–1961 (2009).
Jung, Y. H. et al. Excessive-performance inexperienced versatile electronics based mostly on biodegradable cellulose nanofibril paper. Nat. Commun. 6, 7170 (2015).
World Well being Group 2.1 Billion Individuals Lack Protected Ingesting Water At Residence, Extra Than Twice As Many Lack Protected Sanitation. https://www.who.int/news/item/12-07-2017-2-1-billion-people-lack-safe-drinking-water-at-home-more-than-twice-as-many-lack-safe-sanitation (WHO, 2017).
Li, T. et al. Cellulose ionic conductors with excessive differential thermal voltage for low-grade warmth harvesting. Nat. Mater. 18, 608–613 (2019). An unique report on extremely conductive cellulose nanostructures for thermal power harvesting.
Karim, Z., Mathew, A. P., Kokol, V., Wei, J. & Grahn, M. Excessive-flux affinity membranes based mostly on cellulose nanocomposites for removing of heavy steel ions from industrial effluents. RSC Adv. 6, 20644–20653 (2016).
Voisin, H., Bergström, L., Liu, P. & Mathew, A. Nanocellulose-based supplies for water purification. Nanomaterials 7, 57 (2017).
Kim, S.-H. et al. Versatile/shape-versatile, bipolar all-solid-state lithium-ion batteries ready by multistage printing. Power Environ. Sci. 11, 321–330 (2018).
Kim, J.-H. et al. Nanomat Li–S batteries based mostly on all-fibrous cathode/separator assemblies and bolstered Li steel anodes: in direction of ultrahigh power density and suppleness. Power Environ. Sci. 12, 177–186 (2019).
Li, T. et al. A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Sci. Adv. 5, eaau4238 (2019).
Jiang, Q. et al. Bilayered biofoam for extremely environment friendly photo voltaic steam technology. Adv. Mater. 28, 9400–9407 (2016).
Mohammed, N., Grishkewich, N. & Tam, Ok. C. Cellulose nanomaterials: promising sustainable nanomaterials for utility in water/wastewater remedy processes. Environ. Sci. Nano 5, 623–658 (2018).
Czaja, W., Krystynowicz, A., Bielecki, S. & Brown, R. M. Microbial cellulose—the pure energy to heal wounds. Biomaterials 27, 145–151 (2006).
Hickey, R. J. & Pelling, A. E. Cellulose biomaterials for tissue engineering. Entrance. Bioeng. Biotechnol. 7, 45 (2019).
Solar, B. et al. Functions of cellulose-based supplies in sustained drug supply techniques. Curr. Med. Chem. 26, 2485–2501 (2019).
Yamada, Ok., Shibata, H., Suzuki, Ok. & Citterio, D. Towards sensible utility of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17, 1206–1249 (2017).
An, B. W., Heo, S., Ji, S., Bien, F. & Park, J.-U. Clear and versatile fingerprint sensor array with multiplexed detection of tactile strain and pores and skin temperature. Nat. Commun. 9, 2458 (2018).
Zhao, D. et al. A dynamic gel with reversible and tunable topological networks and performances. Matter 2, 390–403 (2020).
Czaja, W. Ok., Younger, D. J., Kawecki, M. & Brown, R. M. The longer term prospects of microbial cellulose in biomedical functions. Biomacromolecules 8, 1–12 (2007).
Shoseyov, O. et al. Nanocellulose composite biomaterials in business and medication. In Extracellular Sugar-Primarily based Biopolymers Matrices (eds Cohen, E. & Merzendorfer, H.) Vol. 12, 693–784 (Springer, 2019).
Scherner, M. et al. In vivo utility of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of idea? J. Surg. Res. 189, 340–347 (2014).
Ajdary, R., Tardy, B. L., Mattos, B. D., Bai, L. & Rojas, O. J. Plant nanomaterials and inspiration from nature: water interactions and hierarchically structured hydrogels. Adv. Mater. 2001085 (2020).
UPM Biomedicals https://www.upm.com/businesses/upm-biomedicals/
Greca, L. G., Lehtonen, J., Tardy, B. L., Guo, J. & Rojas, O. J. Biofabrication of multifunctional nanocellulosic 3D constructions: a facile and customizable route. Mater. Horiz. 5, 408–415 (2018). An unique report on the synthesis of three-dimensional nanocellulose constructions.
Ajdary, R. et al. Acetylated nanocellulose for single-component bioinks and cell proliferation on 3D-printed scaffolds. Biomacromolecules 20, 2770–2778 (2019).
Huan, S. et al. Two-phase emulgels for direct ink writing of skin-bearing architectures. Adv. Funct. Mater. 29, 1902990 (2019).
Drachuk, I. et al. Immobilization of recombinant E. coli cells in a bacterial cellulose–silk composite matrix to protect organic perform. ACS Biomater. Sci. Eng. 3, 2278–2292 (2017).
Solar, M., Wang, Y., Shi, L. & Klemeš, J. J. Uncovering power use, carbon emissions and environmental burdens of pulp and paper business: a scientific evaluate and meta-analysis. Renew. Maintain. Power Rev. 92, 823–833 (2018). A vital evaluate summarizing the power use, carbon emissions and environmental impression of the pulp and paper business.
Ma, X. et al. Power and carbon coupled water footprint evaluation for straw pulp paper manufacturing. J. Clear. Prod. 233, 23–32 (2019).
Wang, J., Tavakoli, J. & Tang, Y. Bacterial cellulose manufacturing, properties and functions with totally different tradition strategies—a evaluate. Carbohydr. Polym. 219, 63–76 (2019).
Shoda, M. & Sugano, Y. Latest advances in bacterial cellulose manufacturing. Biotechnol. Bioprocess Eng. 10, 1 (2005).
Shi, Z., Zhang, Y., Phillips, G. O. & Yang, G. Utilization of bacterial cellulose in meals. Meals Hydrocoll. 35, 539–545 (2014).
Lin, D., Liu, Z., Shen, R., Chen, S. & Yang, X. Bacterial cellulose in meals business: present analysis and future prospects. Int. J. Biol. Macromol. 158, 1007–1019 (2020).
Rol, F. et al. Pilot-scale twin screw extrusion and chemical pretreatment as an energy-efficient technique for the manufacturing of nanofibrillated cellulose at excessive strong content material. ACS Maintain. Chem. Eng. 5, 6524–6531 (2017).
Hu, W. et al. Protonation course of to boost the water resistance of clear and hazy paper. ACS Maintain. Chem. Eng. 6, 12385–12392 (2018).
Jiang, B. et al. Lignin as a wood-inspired binder enabled robust, water steady, and biodegradable paper for plastic alternative. Adv. Funct. Mater. 30, 1906307 (2020).
Hubbe, M. A. Paper’s resistance to wetting—a evaluate of inner sizing chemical substances and their results. BioResources 2, 106–145 (2007).
Isogai, A., Hänninen, T., Fujisawa, S. & Saito, T. Catalytic oxidation of cellulose with nitroxyl radicals beneath aqueous situations. Prog. Polym. Sci. 86, 122–148 (2018).
Rorrer, N. A. et al. Renewable unsaturated polyesters from muconic acid. ACS Maintain. Chem. Eng. 4, 6867–6876 (2016).
Inglis, A. J., Nebhani, L., Altintas, O., Schmidt, F. G. & Barner-Kowollik, C. Fast bonding/debonding on demand: reversibly cross-linked practical polymers through Diels−Alder chemistry. Macromolecules 43, 5515–5520 (2010).
Ghanadpour, M., Carosio, F., Larsson, P. T. & Wågberg, L. Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant supplies. Biomacromolecules 16, 3399–3410 (2015).
Qin, S. et al. Tremendous gasoline barrier and fireplace resistance of nanoplatelet/nanofibril multilayer skinny movies. Adv. Mater. Interfaces 6, 1801424 (2019).
Mohamed, A. L. & Hassabo, A. G. Flame retardant of cellulosic supplies and their composites. In Flame Retardants: Polymer Blends, Composites and Nanocomposites (eds Visakh, P. M. & Arao, Y.) 247–314 (Springer, 2015).
Carosio, F., Kochumalayil, J., Fina, A. & Berglund, L. A. Excessive thermal shielding results in nanopaper based mostly on multilayers of aligned clay nanoplatelets in cellulose nanofiber matrix. Adv. Mater. Interf. 3, 1600551 (2016).
Carosio, F., Kochumalayil, J., Cuttica, F., Camino, G. & Berglund, L. Oriented clay nanopaper from biobased parts—mechanisms for superior fireplace safety properties. ACS Appl. Mater. Interf. 7, 5847–5856 (2015).
Gan, W. et al. Dense, self-formed char layer permits a fire-retardant wooden structural materials. Adv. Funct. Mater. 29, 1807444 (2019).
Thoorens, G., Krier, F., Leclercq, B., Carlin, B. & Evrard, B. Microcrystalline cellulose, a direct compression binder in a high quality by design surroundings—a evaluate. Int. J. Pharm. 473, 64–72 (2014).
Bai, L. et al. Oil-in-water Pickering emulsions through microfluidization with cellulose nanocrystals. 2. In vitro lipid digestion. Meals Hydrocoll. 96, 709–716 (2019).
Lin, Ok. W. & Lin, H. Y. High quality traits of Chinese language-style meatball containing bacterial cellulose (nata). J. Meals Sci. 69, SNQ107–SNQ111 (2004).
Ong, Ok. J., Shatkin, J. A., Nelson, Ok., Ede, J. D. & Retsina, T. Establishing the security of novel bio-based cellulose nanomaterials for commercialization. NanoImpact 6, 19–29 (2017). A current report on the event of a security testing plan for lignin-coated cellulose nanofibre and nanocrystals.
Zhou, B., Fu, M., Xie, J., Yang, X. & Li, Z. Ecological capabilities of bamboo forest: analysis and utility. J. For. Res. 16, 143–147 (2005).
Yu, Y., Wang, H., Lu, F., Tian, G. & Lin, J. Bamboo fibers for composite functions: a mechanical and morphological investigation. J. Mater. Sci. 49, 2559–2566 (2014).
Klein, B. C., Sampaio, I. L. de M., Mantelatto, P. E., Filho, R. M. & Bonomi, A. Past ethanol, sugar, and electrical energy: a vital evaluate of product diversification in Brazilian sugarcane mills. Biofuels Bioprod. Biorefin. 13, 809–821 (2019).
Imani, M. et al. Coupling nanofibril lateral dimension and residual lignin to tailor the properties of lignocellulose movies. Adv. Mater. Interf. 6, 1900770 (2019).
Stone, J. E. & Scallan, A. M. Impact of part removing upon the porous construction of the cell wall of wooden. J. Polym. Sci. C 11, 13–25 (1965).
Crowther, T. W. et al. Mapping tree density at a world scale. Nature 525, 201–205 (2015).
Henn, A. R. & Fraundorf, P. B. A quantitative measure of the diploma of fibrillation of brief reinforcing fibres. J. Mater. Sci. 25, 3659–3663 (1990).
Zhu, H. et al. Wooden-derived supplies for inexperienced electronics, organic gadgets, and power functions. Chem. Rev. 116, 9305–9374 (2016).
Wang, Q. Q. et al. Morphological growth of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19, 1631–1643 (2012).
Zhu, H. et al. Anomalous scaling regulation of energy and toughness of cellulose nanopaper. Proc. Natl Acad. Sci. USA 112, 8971–8976 (2015).
Redefining bioeconomy. FinnCERES https://www.finnceres.fi/.
La Notte, L. et al. Totally-sprayed versatile polymer photo voltaic cells with a cellulose-graphene electrode. Mater. At this time Power 7, 105–112 (2018).
[ad_2]
Source link